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Abstract. The Cosserat-spectrum theory, which provides an eigenfunction-expansion solution to the Navier
equations of linear elasticity, has recently been applied successfully to a number of problems in elasticity, ther-
moelasticity and viscoelasticity. In this work the theory’s extension to fluid mechanics is explored and the example
problem of the weakly compressible Stokes flow past a sphere is solved in closed form.
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1. Introduction and background

The Cosserat-spectrum theory in elasticity was introduced by Cosserat and Cosserat [1] and
subsequently received rigorous mathematical attention by Mikhlin [2]. It is only recently
that applications of the Cosserat-spectrum theory have appeared in literature. Markenscoff
and Paukshto [3] developed a new variational principle in thermoelasticity within the frame-
work of the Cosserat-spectrum theory. It states that the thermoelastic energy is maximized or
minimized if a thermoelastic solution is contributed from a Cosserat eigenfunction which cor-
responds to the maximum or minimum eigenvalue. Therefore, the Cosserat-spectrum theory
not only provides a method to solve a thermoelastic problem, but it also reveals some physical
insight of the solution to the problem. Liu, Markenscoff and Paukshto [4] used the new energy
principle to examine several thermoelastic problems. They also showed the fast convergence
of the Cosserat eigenfunctions. Although the solution to a thermoelastic problem is written in
the form of the summation of the Cosserat eigenfunctions, only the first few terms are needed.
It therefore provides a feasible approach to the solution of practical problems. Markenscoff,
Liu and Paukshto [5] demonstrated that the viscoelastic equations in the form of Laplace
transforms are essentially the same as their counterparts in elasticity and thus the Cosserat-
spectrum theory can be extended to the study of problems in viscoelasticity. They also showed
that the viscoelastic-material models are naturally related to the Cosserat eigenfunctions.

The similarity between the Navier equations of elasticity and the Navier-Stokes equations
of fluid mechanics suggests the possibility that the Cosserat-spectrum theory will have appli-
cation to the solution of problems in fluid mechanics. Liu and Plotkin [6] took a step in this
direction in their study of the incompressible Stokes flow past a sphere with different free-
stream profiles. The assumption of incompressibility, however, leads to a solution of a reduced
set of governing equations. The most general version of the equations requires a consideration
of the fluid’'s compressibility. In the present paper we extend the Cosserat-spectrum theory to
weakly compressible flow.
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An outline of the aspects of the Cosserat-spectrum theory will now be presented. The
details are available in [7]. The uniqueness theorem in elasticity [8, pp. 9-22] states that
in a bounded domai® the homogeneous Navier equatiolu + »VV - u = 0, with the
homogeneous boundary displacement, admits trivial solutioas0 whenw > —1, where
w=OM+wn/u=1(1-2v), » andu are the Lame constants the Poisson’s raticd2 the
surface of2, u the displacement vector.

In a series of papers [7, pp. 225—-228] the Cosserats showed that the homogeneous Navier
eqguation admits nontrivial solutions whertakes some special valuésunder homogeneous
boundary conditions. The valuésand the corresponding non-zero solutiérere now called
the Cosserat eigenvalues and Cosserat eigenvectors, respectively.

The Cosserat-spectrum theory was then fully developed by Mikhlin [2] who proved the
completeness and orthogonality of the Cosserat eigenfunctions and represented the displace-
ment fieldu for an inhomogeneous problem as a summation of the Cosserat eigenfunc-
tions. For the boundary-value problem of displacement in 3D, the eigenvectors are complete
and form three orthogonal subspaces, hamely, the discrete eigenviggttine eigenvectors
Ut corresponding to the eigenvalue of infinite multiplicily= —1, and the eigenvectors
(> corresponding to the eigenvalue of infinite multiplicily= —oo. The solution of the
inhomogeneous problem

F .
AU+ owVV-u=—— inQ, (1.1a)
w

u=0 onoL, (1.1b)

admits the Mikhlin representation

1 (F 0(*1>)~( 1 . (o0) 5 o
U= — E : oo g F,a®ha> + — (F, 0,)0, |, 1.2a
M n { 1+(l) " +( " ) " +Cbll_w( ) ( )
where
(F, 0) E/F.adv (1.2b)

and dVis the volume element in 3D.

Consider now the possible extension of the Cosserat-spectrum theory to fluid mechanics.
The steady Navier—Stokes equations describing barotropic flows of a compressible viscous
fluid have the form

pU- VU= puAu+ A+ u)V(V-u) —Vp, (1.3a)

V. (pu) =0, p = p(p), (1.3b,c)

wherep, u, andp are the density, velocity, and pressure, respectiyelgnda, the constant

coefficients of dynamic and shear viscosity, respectively, satisfying0, 3» + 2u > 0.
Comparing the momentum equation (1.3a) with the Navier equation (1.1a), we see that,

in order to use the Cosserat-spectrum theory, the nonlinear convective tarnv)u must

be absent, but the compressibility teWtV - u must be present. In [6] the special case of
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incompressible flow is studied. In this paper we consider a low-Reynolds-number flow. A
system at low Reynolds numbéRe « 1) is distinguished by the fact that the nonlinear con-
vective term makes a small contribution to the equation of motion, and may thus be neglected.
Consequently, Equation (1.3) is simplified as follows

wAU+ (A 4+ )V(V - u) = Vp, (1.4a)
V- (pu) =0, dr _ e, (1.4b,c)
dp

where a particular equation of state, (1.4c), is usedade speed of sound, is a constant.
This choice of equation of state is made to simplify the following analysis.

Since the momentum equation (1.4a) has the same form as the Navier equation (1.1a), the
Cosserat-spectrum theory could be applicable to the system of Equations (1.4). A question
naturally arises as to how small the Reynolds number should be for Equation (1.4a) to be
justified; in other words, how can one neglect the nonlinear convective term, while retaining
the compressibility term? The scaling and perturbation analysis in Section 2 will address this
issue. Section 3 applies the Cosserat-spectrum theory to solve for the first-order perturbation
terms due to compressibility. We then illustrate the solution technique by studying the weakly
compressible Stokes flow over a sphere with a uniform free stream profile in Section 4.

2. Scaling and perturbation analysis

Let us nondimensionalize the Navier—Stokes equations (1.3), using scaling appropriate to a
flow at low Reynolds number (Stokes flow). Consider a domain characterized by the length

L and a motion characterized by the velodify The proper nondimensional position vector

X = Xx/L and velocity = u/U contain these scales. For a small Reynolds number flow,

the pressure force must become large to balance the viscous stresses; thus, the appropriate
nondimensional pressureps= p/(uU/L). The density is nondimensionalized By= p/ po,

wherepg is the constant density for incompressible flow. The Navier—Stokes equations (1.3)
are now scaled in dimensionless form as follows

ReU - V)Ui= AU+ owV(V-T) - Vp, (2.1a)
dp Re

V-(pU)=Vp-U+pV -U=0, — =—,
(ou) p-U+p 0 - M2

(2.1b,c)
whereV and A are the dimensionless form &f and A, respectively; Re= LUpo/u is the
Reynolds numben = U/c the Mach number, and = (A 4 1) /. If the Stokes assumption
[9, p. 131] is taken into account, then= %

As mentioned in Section 1, the nonlinear convective term@R¥ ) typically are negli-
gible for flows at low Reynolds numbéRe « 1). Therefore, Equation (2.1a) reduces to the
nondimensionalized form of Equation (1.4a)

AT+ oV(V-T) = Vp. (2.2)
For a weakly compressible flow, we assume

2

M
=—«x1 2.3
¢ Re < (2:3)
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and perform a general perturbation expansiorfgs andp as follows
U = Uinc + eUy + 6%Up + - - -, (2.4a)
P=PinctePitePot . p=lteprte’ppto, (2.4b.c)

whereuinc, pinc and 1 are the dimensionless velocity, pressure and density for the incompress-
ible flow, respectivelyl;, p; andp; are theith order perturbation terms of their counterparts.
We rewrite Equation (2.1c) a$d= ¢ dp and a simple integration gives

0=1+¢p, (2.5)

where the integration constant 1 is the dimensionless density=00 (incompressible flow).
We then substitute Equations (2.4b,c) in Equations (2.5) and equate poveets gt

Pi=Pne  Pi=P. i=123.... (2.6a,0)

Equation (2.6) shows that theé + 1)th density perturbation term is equal to ttike pressure
perturbation term.
With the use of Equations (2.4a,c), Equation (2.1b) becomes

V- (p0)
= (8v51+82652+‘”) *(Uinc +eUp + - )
+(A+epy+ )V Tinc+ eV - Ty + )

=V 'Uinc+8(vﬁl 'Uinc+ﬁlv‘uinc+v'ul) + 0(82) +-e
0.

2.7)

We now equate powers efto obtain the leading-order and the first-order perturbation terms
of the continuity equation as follows

V - TUinc = 0, VP -Uine+ V -Up = 0. (2.8a,b)
With the use of Equations (2.4a,b), Equation (2.2) becomes
[ZUinc + cﬁ(V “Uine) — Vﬁinc]
+e[ATy + 0V(V -Ty) — VPl + 0% +--- =0. (2.9)
Let us now equate powers efand use Equation (2.8a) to get the leading-order and the first-
order perturbation terms of the momentum equation as follows
Alinc = VPine AU+ oV (V -Ty) = Vp,. (2.10a,b)

This approach shows that the perturbation terms appear in the ordes=afM?/Re)’, i =
1,2, 3.... The present paper will retain the first perturbation term. Recall that we neglect the
nonlinear convective term for Re 1. Therefore, the Stokes scaling and perturbation analysis
implies that Equation (1.4a) is justified under the limit

M? <« Rek 1. (2.11)
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Equation (2.11) gives rigorous requirements for a weakly compressible flow. The potential
application may be found in a few examples such as a polytropic gas [10] and slider air-
bearings [11], where the compressibility effects were considered for flows at small Reynolds
number. It is of theoretical interest to explore the extension of the Cosserat-spectrum theory
to fluid mechanics. The mathematical aspects of compressible flows at low Reynolds number
have been studied by Kazhikhov [12] and Weigant and Kazhikhov [13]. Kozhevnikov [14]
studied the connection between the Stokes problems in hydrodynamics and boundary-value
problems in elasticity.

3. Application of the Cosserat-spectrum theory to compressible Stokes flow

The present paper extends the Cosserat-spectrum theory to study the first-order perturbation
terms of compressible Stokes flow, which are described by Equation (2.2) and Equations
(2.1b,c). We now rewrite these equations in dimensional form for a dofaais

\Y .
AU+ wVV U= P in Q, (3.1a)

w

V-(pu)=0 inQ, dp/dp =c? in Q. (3.1b,c)
The velocity is prescribed on the boundaig as

u=u, onoaK. (3.2)

For a weakly compressible flow, we approximate the solutions to the system of Equation
(3.1) to be the sum of the corresponding incompressible Stokes solutions and their first-order
perturbation terms, namely

U A Uinc + €Uy, P~ Pinc + €p1, P~ po+ Ep1, (3.3a,b,c)

whereuinc, pine, aNdpg are the solutions to the incompressible counterpastsy,, andp; are
their first-order perturbation terms, respectively, and M?/Re.

As analyzed in the previous section, the leading-order terms are associated with the solu-
tions to the imcompressible counterpaitg., pinc, andpg as follows

AUjne = in Q, (3.4a)

V. Un=0 in g, 0 =po INQ, (3.4b,c)
with the boundary condition

The first-order perturbation terms, p;, and p; are the dimensional form of Equation
(2.10b), Equation (2.8b) and Equation (2.6a), namely

A\
AU+ 0V(V-up = -2 ing, (3.5a)
I
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. ,OoL .
V,O]_ - Uine + ,Oov -up =0 inQ, p1 = M_Upinc in Q, (35b,C)
with the boundary condition
up=0 onaQ. (3.5d)

We shall now use Equations (3.5b,c) to write the linear continuity equation for the pertur-
bation termu; as

L
VU1 = ———V Pinc  Uinc. (3.6)
nu
In the Cosserat-spectrum theory, Equation (3.5a) is the Cosserat-eigenvalue problem of the

first kind. Using the equivalent body forée= —V p; in the Mikhlin-representation equation
(1.2), we have

1 (Vpl, G(il)) ~(=1) ~ ~ 67)n(vpla l]n) ~
U = —— — 0 70 Vpi, u(oo) u(oo) ——U, ¢, 3.7a
! 'MXn:{ w+1 w VP GO0 (@, — w) ( )
(Vp1,0) = / Vpi-adv. (3.7b)

By taking (V p1, G{>) = 0 into account [6], we may reduce Equation (3.7) to
Up= > fulla+ Y > f0alb, (3.8a)

where

Cbn(vpl, un) -1 — _ (Vpl’ 01(1;11))
w(w — @) i plw+1)

n =

(3.8b,C)

are constants to be determined. In general, there exist infinite subspaces of the Cosserat eigen-
vectors0{ D associated witho = —1. A new index parameter is introduced in Equa-
tion (3.8) in order to specify thai.? is the (n, m) component in the infinite orthogonal
subspaces ai? [7, pp. 189-207].

Substituting Equation (3.8a) in Equation (3.5a) yields

) ) ) ) v
3 fulAl, + 0V -G,]+ 303 £ PIATY + 0V Y - TN = %. (3.9)
n n m

We now recall that the Cosserat eigenvalégsor ® = —1 and their corresponding
eigenvectorsi, or G Y satisfy the homogeneous Navier equations

Vi, +@,VV -, =0, Vi, P-vv.a_ P =0. (3.10a,b)
The summation of Equation (3.10) over indexandm gives

Z fn[Aan + (;)nvv : Gn] = 0, (311a)
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nm

DY rGPAY —vv a1 =o. (3.11b)

n m

Subtraction of Equation (3.9) from Equation (3.11) gives

v
Y = a)VY -0+ Y faP @+ DYV AL = 2 (3.12)
n n m M

Integration of Equation (3.12) gives the pressure perturbation term
pr=u)_ fa@=a)V -U+ud > foP@+DV-Tu,D. (3.13)

The linear continuity equation (3.6) is now employed to evaluate the coefficjgraad
£1_ With the use of Equation (3.8a), Equation (3.6) becomes

nm

) e L
Xn: AT Z Xm: FiV G = o - (3.14)

Each term in Equation (3.14) is multiplied by - G, or Vv - @{,?, then integrated over the
domain, and with the use of the orthogonality conditions [2] for the first boundary-value
problem, we have

Lo,

o U

/ V Pinc - UincV - U, dV, (3.15a)

L
oy _ L / V Pine - UnoV - G0 AV (3.15b)
uU

The pressure perturbation tepmrepresented by Equation (3.13) can be further simplified.
From Equation (3.14) we have

. L )
DAY Y = o Vene Une = 30 £V -G (3.16)
m n

n

With the use of Equation (3.16), Equation (3.13) becomes

~ - w+ 1)L
P1L=—M Xn: fn(l+ a)n)V U, — (Tvpinc * Uinc. (317)

To solve this compressible-flow problem, one needs to add the perturbatioreterg,,
and ¢p; to the incompressible counterpandg,, pinc, and po. The perturbation terms are
associated with Equation (3.8a), Equation (3.17) and Equation (3.5c), respectively.

It is important to mention thaf,(_Y = 0 for compressible flow in general. Although it
has no contribution in incompressible flow, the infinite orthogonal subspaces of the Cosserat
eigenfunctiondi~? associated with eigenvaluig@ = —1 play an important role in compress-
ible flow. In other words, the incompressible presspifg is harmonic, but the compressible
flow pressurep = pinc + ¢p1 is nonharmonic.
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Figure 1. Spherical coordinate system for flow over a sphere.

4. Example: Uniform flow past a sphere

To illustrate the solution technique described above, we now study the compressible Stokes
flow past a sphere with a uniform free-stream profile. The Cosserat eigenvalues and eigen-
vectors for the first boundary-value problem of a spherical rigid inclusion are presented in the
Appendix.

The spherical coordinate system is shown in Figure 1. Note that the argleot shown.

For this specific flow, the characteristic velocity = U, and characteristic length =

ro, WhereUj is the free-stream velocity ang the radius of the sphere. Consequently, the
Reynolds number Re= roUppo/1t, the Mach numbeM = Uy/c, and the perturbation
parametee = M?/Re= uUy/ropoc?.

As described in the previous section, the solutions of a compressible flow are approximated
as the sum of its incompressible counterparts and the corresponding perturbation terms. We
now study the perturbation terms for the compressible flow over a sphere with uniform free-
stream profile. Referring to the pressure in the incompressible flow [9, p. 688] we calculate its
gradient as follows

3uroU
Pinc = po+ 2220 cosh, (4.2)
2r
3uroU, i
VPinc = — M:g 0(cos@e, + %sm@eg). 4.2)

The velocity field of the incompressible flow [9, p. 688] can be expressed as follows

3ro rg 3ro rg .
Upnc = U -1+ — — — ) cosd Up|1l— — — — ] sinfe,. 4.3
Inc 0 ( + 2}" 2}"3 er + 0 4}" 4}"3 ee ( )
The scalar product o¥ pjnc - Uinc IS Now written as
3uU?
V Pinc + Uine = ——>[3(s* — 5%) — (5% — 25* 4 155) P,(cos)], (4.4)

o
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wheres = ro/r and P,(cos9) is the Legendre polynomial of degree 2.
We now use Equation (4.4) and Equation (A3) in conjunction with Equation (3.15a) to
evaluate the coefficientg, as follows

3 CorgU 1
fo= % and C, ==+ 1622 (458.)
0
fu=0, n=134 ... (4.5b)

Inserting Equation (4.4) into Equation (3.15b) to obtain the coefficigfis, we have

3
o0 = UO/[ (s* — 54 4 L8 Pplv - 0GP dV, (4.6)
where
2773 sing
dv = T gedd, sel0,1], 6el0xl,
N

is the volume element in the spherical coordinate sysie®) [7, pp. 189-207].
Next, we useV - 0.1 oc P,(cosd) and the orthogonal property of the Legendre poly-
nomials to get

3
FOb 4U0 /(s4 — V. aS v, (4.7a)
10
3U,
fan = ?0 / (53— 3%+ 38 PV - U5,V dV, (4.70)

We now insert Equation (A7) into Equation (4.7a) to evaluate the coeﬁig’@ﬁ and get

1
fo = 3 ConréUs / (5% — 5%) Jom (s) ds. (4.8)
s=0
Since the Jacobi polynomials are complete, we can write
§2— s = 125‘100 + %J()l — %Joz — 2Jo3 — Joa. (49)

The orthogonal property of the Jacobi polynomi#ls (s) is used to get

_ 27TC00//I00}’2U0 _ 37TC01//I01}’2U0
D - 070 FEY = c (thei} (4.10a,b)
157 Gozh U
f( D _ Y 02702”0 0’ f( 1 —67‘[C03h03}’0U0, (4.10c,d)
02 = —3nCoshoarilo, e D=0 (m=>5). (4.10e,f)
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Inserting Equation (A12) into (4.7b) to evaluate the coefficight”, we have

127 Gy, r2U,
A —7'[ 2 0/ (1= 25 4 25%) J2(5)s ds. (4.11)

The completeness of the Jacobi polynomials is used to evaluate
1-25+38 =2 00— 271+ L0+ 110 (4.12)

Use of the orthogonal property of the Jacobi polynomigls(s) yields

_ 157 C21h211’2U0 _ 9 C22h22r2U0
2(1 D _ - 070 2(2 n_ 5 tha 3 (4.13a,b)
31 CashagrdU
fah =T 523;»0_0’ ) =0 (m>4. (4.13c,d)

The velocity perturbation term due to the contribution from the discrete Cosserat eigen-
functionsu,, is as follows

. 3y, , 4 dpP,
= (52— P. -2 4.14
fola 32(s s)( 3Pe + deee (4.14)

With the use of Equation (4.10) ariif, ', defined by Equations (A10a,c,e,qg,i), we eval-
uate the second part of Equation (3.8a) to obtain the velocity perturbations term due to the
contribution from the Cosserat eigenfunctiai sV as follows

(=) ~(=D (=) ~(=D (=) ~(=D) (=) ~(=D (=) ~(=D
00 u00 + for U01 + fo2 Uoz + foz U03 + foa U04

s 1372 578 3¢ 35  322log(s)
_ 325 10g(s) 4.1
0(14 70 V28 "5 2 35 )e, (4.152)

Similarly, by using Equation (4.13) anli,‘nl), defined by Equations (Al5a,c,e), we obtain
the velocity perturbations term due to the contribution from the Cosserat eigenfun@&;}g}hs
as follows

(=) ~(=D (=) ~(=D (-D~(-1) _
fa1 u21 + f22 u22 + fa3 u23 =
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55U, <37s2 1555 81s* 5¢° 9s5* IOg(s))
- - - | P&

2 \ 392 392 196 7 16
5U, (375 1558 595 55° 3s*log(s)) dP»
— — — — ) —8&. 4.15b
+ 4 <196 392 392 14 8 ) do & ( )

The velocity perturbation term is therefore expressed in closed form as follows

38U0
32

dPp.
guy = (s* — 5% <—3P29r + —299)

do

s 13752+57s3+3s4 3° 322109\
Yo\127 770 "28 "5 2 35 ”

5¢Uy (375 1556 81s4+5s5 9s*log(s) P
2 392 392 196 7 16 2

do

BelUp (37£ 1558 595 555 3stlo dp
° - _ o o Svlogk)) dh (4.16)
4 \196 392 392 ' 14 8

By using Equation (3.17) to calculate the pressure perturbation term, we get

3 Dul 3epnU
= M[(s4 — %) — (4s° — Bs* + 5O Py — L0

s3P,. (4.17)
41’0 0

&p1

Now we use Equation (3.5¢) to write the density perturbation term as

3
ep1 = 82p0s2 cosb. (4.18)

Results for the pressure and velocity perturbation terms are shown in the following figures.
In Figure 2 the nondimensional presswre= p1/(uUp/ro) has been plotted fap = % Fig-
ure 2(a) show®, on the surface of the sphere. Since the compressible pressure perturbation
is proportional toP,(cosf) on the surface, we see thay is symmetric about = 90°.
Figures 2(b,c) show the pressures the nondimensional radial distanegry at = 0°
(or 180), 9C°, respectively. Aty = 90°, while the incompressible pressure is identically
zero, the compressible pressure is not. In Figure 3 the nondimensional velocity perturbation
components, = uy,. /Uy anduyy = ui9/Ug have been plotteds.r/rq at different values of
6. Figures 3(a—c) show the radial velocity componentsaté = 0°, 90°, 180, respectively.
Figures 3(d—e) show the tangential velocity componamjsat 6 = 45°, 135, respectively.
The tangential velocity componemt, is zero ah = 0°, 6 = 90° andd = 18C. At 6 = 90,
while the radial velocity component is identically zero for incompressible flow, it is not zero
for the weakly compressible flow.

It should be stressed that the only dependence oomes from the pressure perturbation
term, while the velocity and density perturbation terms are independent of it.
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Now let us compute the drag force for the weakly compressible flow. The stragplied
to the sphere by the fluid is given by

o = pl — (2ue + X div el), (4.19)

wheree is the strain rate tensor, ahds the identity tensor. The traction acting on the surface
of the sphere is given by

t=0-n= [p - (2/’L8rr + Aﬂgkk)]er - 2M8r0ev9- (420)
The traction component in thedirection will be
ty=t-e, = —[p— (2ue,, + Aeg]COSH — 2ue,4 SING (4.22)

and the drag force is therefore given by
Fp = /tx|r=ro ds, (422)

where d = 2rr3sind do, 6 € [0, 7 ].
The pressure and velocity for the weakly compressible flow are recalled as follows

P = Dinc + €p1, (4.23)

U=Unc+efollo+e Y fo, V06" +e Y fa, 050, (4.24)

The drag force contributed by the incompressible componghtsand uinc is given by [9
p. 689]

The drag force contributed from the pressure perturbation pgrmm P»>(cose) is proportional
to

/ P,(cosh) cosh sing do = 0. (4.26)
0

We now evaluate the drag force contributed from the velocity perturbation felien o
f(r)Pe + g(r)(dP,/db)ey, where the functiong (r) andg(r) vanish orv = ry. The strain-
rate components on the surface are therefore proportional to

8rr|r=r0 & P,(cost), 899|r:ro =0, (427a,b)

dP,(cosd)
do ’

and the stress components are thus proportional to

Epplr=ro = 0, €r0r=ry X (4.27¢,d)

dP,(cosH)

O_rr|r=r0 (&8 PZ(COSG)’ O_r9|r=r0 (&8 a0

(4.28a,b)
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Note that the normal stress, = 0 on the surface of the sphere is for the incompressible flow,
while it is not for a compressible flow. Using Equations (4.21), (4.22) and (4.27), we find
that the velocity componentsl, have no contribution to the drag force. Repeating the same
procedures, we also find that the other velocity compongfji8as and £ aS » have no
contribution to the drag force. Consequenfyy = Fpinc, i.€. the compressibility effect does

not alter the drag force.

5. Discussion and conclusions

In this paper we have extended the applicability of the Cosserat-spectrum theory to fluid me-
chanics and have demonstrated its usefulness in the solution of weakly compressible Stokes-
flow problems. With the use of a perturbation approach, the solution of a compressible flow
(Equations (3.1)) was approximated as the sum of its incompressible counterpart and the corre-
sponding perturbation term. In this perturbation approach,M?/Re « 1 was assumed for

a weakly compressible flow. A general perturbation analysis presented in Section 2 indicates
that these terms appear in the order’dfn = 1,2, 3.... The present paper has retained the

first perturbation term.

The continuity equation was employed to evaluate the perturbation terms, which are as-
sociated with both the discrete eigenvectiysand the eigenvectors( .V corresponding to
eigenvaluev = —1 of infinite multiplicity. Once the Cosserat eigenvalues were obtained and
eigenvectors relating to the specific dom&nrderived, the solutions were found by evalua-
tion of the coefficientsf, and £ of 0, and@_, Y, respectively. At the present time, the
sphere is the only 3D body for which the Cosserat eigenvalues and eigenvectors are available.
The velocity-perturbation term is closely relatedipandd’ Y. The pressure perturbation
term has been shown to be related to the divergence of the Cosserat eigenvecdigrardiv
div G P, but it could be written in a closed form without involving di, Y. The density
perturbation term was written in a simple closed form without involving bothigiand
div alb.

By applying this solution technique, we have obtained an analytical solution for the com-
pressible Stokes flow over a sphere with a uniform free-stream profile. Only the discrete
eigenvectofi, and finite terms oY (n = 0, 2) contribute to the velocity field. The velocity,
pressure and density perturbation terms were obtained in closed form. Also, the velocity,
pressure and density change due to the compressibility effect, and the drag force was shown
to remain the same.

Appendix A. The Cosserat eigenvalues and eigenvectors for a spherical rigid inclusion

In the example shown above, we need to age(discrete eigenvalue)j, (discrete eigen-
vector), S P and iy, ¥ (eigenvectors associated with the eigenvalue of infinite multiplicity

@ = —1) for the first boundary-value problem of a spherical rigid inclusion in an infinite
space. These Cosserat eigenvalues and eigenvectors are recalled as follows [7, pp. 30-32,
189-207].

For an axisymmetric problem, the discrete Cosserat eigengglitbe discrete eigenvector
0, and its divergence are given by

2n+1
n+1’

w,; =

0, = C,(r> — r@)VF_(ui1), (A1,2)
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V. Cln = —Z(I’l + 1)CnF7(n+l)v (A3)

wheren = 1,2, ... and

2n—1
16(n+ 1)7'rr0

ro

n+1
(C)? = Fonin) = (7) P, (cos), (A4,5)

and P, (cosh) is the Legendre polynomial of degree
The Cosserat eigenvectdf ~ and its divergence are given as follows

08;11) = UOmr& + Uomo €y, (A6a)

uomr = Rom (5), Uomo = 0, (A6b,C)

ROm(S) = _COerSZ/ tiz-]om(t) dt, (A6d)
t=1

V05 = Cons®Jom(s), (A7)

wherem =0, 1, 2, ... and

1
2 —
Om = 471r0h0m (A8)
F(m+l) rn—-1+1 ,_,
Jom (s) = Tem+ D Z( ( >——l TR (A9a)
I (m + 1) (A9b)

hm: )
O = om + DI22m + 1)

whereI'(m) is the Gamma function an(j?) = m!/l!(m — I)! is the binomial coefficient.
Equation (A9) defines a Jacobi polynomial with weights) = 1, Jo,. (s), and its normhg,,
[15, pp. 773-775].

The first five eigenvectors @, > and their divergenc® - G5 " (m = 0,1, ..., 4) used in
the example of uniform flow past a sphere are written out explicitly as follows

1
~( H _ 2
_ — e, Al0a
Uoo 5 ’_rrro(s 5%) ( )
1
Va5t = 52, (A10b)
2 nrg
1) V3
oy = ~3 nro(ss — 3s? + 45° log(s))e,, (A10c)
3
vt = - V3 (3s% — 45%), (A10d)

3
2,/mrg
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~(=1) \/5
oy = 5==(6s + 9s% — 155° — 205 log(s))e;, (A10e)
5
V-5 = 5 3(6s2 — 205 + 155%), (A10f)
2,/mrg
oy = — VT £ — 1058 1 284 + 607
Uog = ~3 mo(los—i- 675 — 105s° + 285" + 60s log(s))e,, (A109)
7
VoY =— i (105 — 60s® + 105" — 565°), (A10h)
2 /mrd
3
~(=1) .
Uos” = 5 —(15s+ 223¢ — 4205* 4 2525 — 705° + 1404 log(s))e. (A10i)
3
v.aiY = (155% — 140s> + 4205* — 5045 + 2105°). (A10))
2 rrrg

The Cosserat eigenvectﬁg;l) and its divergence are as follows

0(2;11) = U2y, € + U2n9€y, (Alla)
Umr = R, (s) Po(COSH), (Allb)
Uomp = —S /1 Rz,,lm%%, (Allc)
Ron(s) = —2Couros / Sl(t3+ 212) oy (1) dt
-
—Z2Couro(s™t — 5% / Sotzjgm(t) dr, (Al1d)
=

V05 = €53 T2 (5) P2(COSH). (A12)

wherem =1,2,3,... and

5

2 _
Gy = " (A13)
_Lm+3 L (m\LP@n—1+3)
Jmn—”2+$£JD<JFW_H3¢ , (A142)
2 2
_ %m+DHIr*(m 4+ 3) (A14b)

2= om + 3T22m 1 3)



Equation (A14) defines a Jacobi polynomial with weights) = s?
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haw [15, pp. 773-775].
The first three eigenvectors &, and their divergence¥ - 05,7 (m = 1, 2, 3) used in

the example of uniform flow past a sphere are written out explicitly as follows

- 5
Ugll) = —4ﬂ(52—4sg+&4)P2(cow)a
5 s 4. dPy(cosH)
- _ 2S ,
+4\/7T_”0(S + )—dQ e
=D S 3 4
Voly W =— 3(3s — 45*) P,(cosb),
2,/mry
~(=1) «/3_5
as? = 5 m(sz—1Os3+9s4—9s4log(s))P2(COSG)e,
V35 2 sz(cose)
- — 553 + 4s* — 3s*log(s)) ————— &y,
zm(s 5™ + 4s s 109(s)) a0
35
V- iy, = V35 (653 — 205* + 155%) Po(cosh),
2. /mrd
agy = Y (552 — 90s° — 275" + 112 — 1895* log(s)) P»(Cosh)e,
23 24/7TI’0
V5 sz(cose)
55 — 45s° + 125" + 285> — 635" log(s)) —————@y,
24/nro( ® S F LesT+ 2s s"10g(s)) e
3/5
V.ot =~ V5 (10s® — 60s* + 1055 — 565°) Po(cOSH).
2 nrg
Acknowledgment

, Jom (8), and its norm

(Al5a)

(A15b)

(A15¢)

(A15d)

(Al5e)

(A15f)

The authors would like to thank Professor Markenscoff of UCSD and Professor Paukshto
of Saint Petersburg State University, Russia, for their help in the construction of the infinite
orthogonal base8~Y. Paukshto also pointed out that the pressure perturbation term can be
written in a form without involvingi >, namely Equation (3.17) in this paper.



172 Wensen Liu and Allen Plotkin

References

11.

12.

13.

14.

15.

E. Cosserat and F. Cosserat, Sur les équations de la théorie de I'élaBtiEltéAcad. Sci. Pari$26 (1898)
1089-1091.

S. G. Mikhlin, The spectrum of a family of operators in the theory of elastitigpekhi Mat. NauKin
Russian) 28 (1973) 43-82. English translatiBussian Math. Survey8 (1973) 45-88.

X. Markenscoff and M. V. Paukshto, The Cosserat spectrum in the theory of elasticity and appli€ations.

R. Soc. Londo®454 (1998) 631-643.

W. Liu, X. Markenscoff and M. V. Paukshto, The Cosserat spectrum theory in thermoelasticity and
application to the problem of heat flow past a spherical rigid inclusigkppl. Mech65 (1998) 614-618.

X. Markenscoff, W. Liu and M. V. Paukshto, Application of the Cosserat spectrum theory to viscoelasticity.
J. Mech. Phys. Solidé6 (1998) 1969-1980.

W. Liu and A. Plotkin, Application of the Cosserat spectrum theory to StokesJl@ppl. Mech(September

1999) (in press).

W. Liu, The Cosserat Spectrum Theory and its ApplicatidttsD. Dissertation, University of California,

San Diego and San Diego State University (1998) 228pp.

R. J. Knops and L. E. Paynegniqueness Theorems in Linear Elasticity. New York: Springer-Verlag (1971)
130pp.

R. L. Pantonincompressible Flow2nd ed.). New York: John Wiley and Sons (1996) 837pp.

T. Passot, A. Pouquet, and P. L. Sulem, Role of conservation laws in small Reynolds number closures:
Application to large-scale dynamics of compressible flddrsysica D43 (1990) 37-43.

W. D. Henshaw, L. G. Reyna, and J. A. Zufiria, Compressible Navier—Stokes computations for slider air-
bearingsASME J. Tribologyl 13 (1991) 73-79.

A. V. Kazhikhov, The equation of potential flows of a compressible viscous fluid at small Reynolds numbers:
Existence, uniqueness, and stabilization of solutions. TranslatedSiinskii Matematicheskii Zhurné4

(1993) 70-80.

V. A. Weignant and A. V. Kazhikhov, The global solvability of initial boundary value problem for potential
flow of compressible flow at low Reynolds nhumbBoklady Acad. Naukin Russian), 340 (1995) 460—-462.

A. Kozhevnikov, The basic boundary value problems of static elasticity theory and their Cosserat spectrum.
Math. Zeits213 (1993) 241-274.

M. Abramowitz and I. A. Stegurntiandbook of Mathematical Functions, with Formulas, Graphs and
Mathematical TablesNew York: Dover Publications (1972) 1046pp.



