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Abstract. The Cosserat-spectrum theory, which provides an eigenfunction-expansion solution to the Navier
equations of linear elasticity, has recently been applied successfully to a number of problems in elasticity, ther-
moelasticity and viscoelasticity. In this work the theory’s extension to fluid mechanics is explored and the example
problem of the weakly compressible Stokes flow past a sphere is solved in closed form.
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1. Introduction and background

The Cosserat-spectrum theory in elasticity was introduced by Cosserat and Cosserat [1] and
subsequently received rigorous mathematical attention by Mikhlin [2]. It is only recently
that applications of the Cosserat-spectrum theory have appeared in literature. Markenscoff
and Paukshto [3] developed a new variational principle in thermoelasticity within the frame-
work of the Cosserat-spectrum theory. It states that the thermoelastic energy is maximized or
minimized if a thermoelastic solution is contributed from a Cosserat eigenfunction which cor-
responds to the maximum or minimum eigenvalue. Therefore, the Cosserat-spectrum theory
not only provides a method to solve a thermoelastic problem, but it also reveals some physical
insight of the solution to the problem. Liu, Markenscoff and Paukshto [4] used the new energy
principle to examine several thermoelastic problems. They also showed the fast convergence
of the Cosserat eigenfunctions. Although the solution to a thermoelastic problem is written in
the form of the summation of the Cosserat eigenfunctions, only the first few terms are needed.
It therefore provides a feasible approach to the solution of practical problems. Markenscoff,
Liu and Paukshto [5] demonstrated that the viscoelastic equations in the form of Laplace
transforms are essentially the same as their counterparts in elasticity and thus the Cosserat-
spectrum theory can be extended to the study of problems in viscoelasticity. They also showed
that the viscoelastic-material models are naturally related to the Cosserat eigenfunctions.

The similarity between the Navier equations of elasticity and the Navier-Stokes equations
of fluid mechanics suggests the possibility that the Cosserat-spectrum theory will have appli-
cation to the solution of problems in fluid mechanics. Liu and Plotkin [6] took a step in this
direction in their study of the incompressible Stokes flow past a sphere with different free-
stream profiles. The assumption of incompressibility, however, leads to a solution of a reduced
set of governing equations. The most general version of the equations requires a consideration
of the fluid’s compressibility. In the present paper we extend the Cosserat-spectrum theory to
weakly compressible flow.
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An outline of the aspects of the Cosserat-spectrum theory will now be presented. The
details are available in [7]. The uniqueness theorem in elasticity [8, pp. 9–22] states that
in a bounded domain� the homogeneous Navier equation1u + ω∇∇ · u = 0, with the
homogeneous boundary displacement, admits trivial solutionsu = 0 whenω > −1, where
ω = (λ+ µ)/µ = 1/(1− 2ν), λ andµ are the Lame constants,ν the Poisson’s ratio,∂� the
surface of�,u the displacement vector.

In a series of papers [7, pp. 225–228] the Cosserats showed that the homogeneous Navier
equation admits nontrivial solutions whenω takes some special valuesω̃ under homogeneous
boundary conditions. The valuesω̃ and the corresponding non-zero solutionsũ are now called
the Cosserat eigenvalues and Cosserat eigenvectors, respectively.

The Cosserat-spectrum theory was then fully developed by Mikhlin [2] who proved the
completeness and orthogonality of the Cosserat eigenfunctions and represented the displace-
ment field u for an inhomogeneous problem as a summation of the Cosserat eigenfunc-
tions. For the boundary-value problem of displacement in 3D, the eigenvectors are complete
and form three orthogonal subspaces, namely, the discrete eigenvectorsũn, the eigenvectors
ũ(−1)
n corresponding to the eigenvalue of infinite multiplicityω̃ = −1, and the eigenvectors

ũ(∞)n corresponding to the eigenvalue of infinite multiplicityω̃ = −∞. The solution of the
inhomogeneous problem

1u+ ω∇∇ · u = −F
µ

in �, (1.1a)

u = 0 on ∂�, (1.1b)

admits the Mikhlin representation

u = 1

µ

∑
n

{
(F, ũ(−1)

n )

1+ ω ũ(−1)
n + (F, ũ(∞)n )ũ(∞)n +

ω̃n

ω̃n − ω(F, ũn)ũn
}
, (1.2a)

where

(F, ũ) ≡
∫

F · ũ dV (1.2b)

and dV is the volume element in 3D.
Consider now the possible extension of the Cosserat-spectrum theory to fluid mechanics.

The steady Navier–Stokes equations describing barotropic flows of a compressible viscous
fluid have the form

ρ(u · ∇)u = µ1u+ (λ+ µ)∇(∇ · u)−∇p, (1.3a)

∇ · (ρu) = 0, p = p(ρ), (1.3b,c)

whereρ,u, andp are the density, velocity, and pressure, respectively;µ andλ, the constant
coefficients of dynamic and shear viscosity, respectively, satisfyingµ > 0,3λ+ 2µ > 0.

Comparing the momentum equation (1.3a) with the Navier equation (1.1a), we see that,
in order to use the Cosserat-spectrum theory, the nonlinear convective termρ(u · ∇)u must
be absent, but the compressibility term∇∇ · u must be present. In [6] the special case of
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incompressible flow is studied. In this paper we consider a low-Reynolds-number flow. A
system at low Reynolds number(Re� 1) is distinguished by the fact that the nonlinear con-
vective term makes a small contribution to the equation of motion, and may thus be neglected.
Consequently, Equation (1.3) is simplified as follows

µ1u+ (λ+ µ)∇(∇ · u) = ∇p, (1.4a)

∇ · (ρu) = 0,
dp

dρ
= c2, (1.4b,c)

where a particular equation of state, (1.4c), is used andc, the speed of sound, is a constant.
This choice of equation of state is made to simplify the following analysis.

Since the momentum equation (1.4a) has the same form as the Navier equation (1.1a), the
Cosserat-spectrum theory could be applicable to the system of Equations (1.4). A question
naturally arises as to how small the Reynolds number should be for Equation (1.4a) to be
justified; in other words, how can one neglect the nonlinear convective term, while retaining
the compressibility term? The scaling and perturbation analysis in Section 2 will address this
issue. Section 3 applies the Cosserat-spectrum theory to solve for the first-order perturbation
terms due to compressibility. We then illustrate the solution technique by studying the weakly
compressible Stokes flow over a sphere with a uniform free stream profile in Section 4.

2. Scaling and perturbation analysis

Let us nondimensionalize the Navier–Stokes equations (1.3), using scaling appropriate to a
flow at low Reynolds number (Stokes flow). Consider a domain characterized by the length
L and a motion characterized by the velocityU . The proper nondimensional position vector
x = x/L and velocityu = u/U contain these scales. For a small Reynolds number flow,
the pressure force must become large to balance the viscous stresses; thus, the appropriate
nondimensional pressure isp = p/(µU/L). The density is nondimensionalized byρ = ρ/ρ0,
whereρ0 is the constant density for incompressible flow. The Navier–Stokes equations (1.3)
are now scaled in dimensionless form as follows

Re(u · ∇)u = 1u+ ω∇(∇ · u)−∇p, (2.1a)

∇ · (ρ u) = ∇ρ · u+ ρ∇ · u = 0,
dp

dρ
= Re

M2
, (2.1b,c)

where∇ and1 are the dimensionless form of∇ and1, respectively; Re= LUρ0/µ is the
Reynolds number,M = U/c the Mach number, andω = (λ+µ)/µ. If the Stokes assumption
[9, p. 131] is taken into account, thenω = 1

3.
As mentioned in Section 1, the nonlinear convective terms Re(u · ∇)u typically are negli-

gible for flows at low Reynolds number(Re� 1). Therefore, Equation (2.1a) reduces to the
nondimensionalized form of Equation (1.4a)

1u+ ω∇(∇ · u) = ∇p. (2.2)

For a weakly compressible flow, we assume

ε = M2

Re
� 1 (2.3)
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and perform a general perturbation expansion foru, p andρ as follows

u = uinc+ εu1+ ε2u2+ · · · , (2.4a)

p = pinc+ εp1+ ε2p2+ · · · , ρ = 1+ ερ1+ ε2ρ2+ · · · , (2.4b,c)

whereuinc, pinc and 1 are the dimensionless velocity, pressure and density for the incompress-
ible flow, respectively,ui , pi andρi are theith order perturbation terms of their counterparts.

We rewrite Equation (2.1c) as dρ = ε dp and a simple integration gives

ρ = 1+ εp, (2.5)

where the integration constant 1 is the dimensionless density forε = 0 (incompressible flow).
We then substitute Equations (2.4b,c) in Equations (2.5) and equate powers ofε to get

ρ1 = pinc, ρi+1 = pi, i = 1,2,3, . . . . (2.6a,b)

Equation (2.6) shows that the(i + 1)th density perturbation term is equal to theith pressure
perturbation term.

With the use of Equations (2.4a,c), Equation (2.1b) becomes

∇ · (ρ u)

= (ε∇ρ1+ ε2∇ρ2+ · · ·) · (uinc+ εu1+ · · ·)
+(1+ ερ1+ · · ·)(∇ · uinc+ ε∇ · u1+ · · ·)
= ∇ · uinc+ ε(∇ρ1 · uinc+ ρ1∇ · uinc+∇ · u1)+O(ε2)+ · · ·
= 0. (2.7)

We now equate powers ofε to obtain the leading-order and the first-order perturbation terms
of the continuity equation as follows

∇ · uinc = 0, ∇ρ1 · uinc+∇ · u1 = 0. (2.8a,b)

With the use of Equations (2.4a,b), Equation (2.2) becomes

[1uinc+ ω∇(∇ · uinc)− ∇pinc]
+ε[1u1+ ω∇(∇ · u1)−∇p1] +O(ε2)+ · · · = 0. (2.9)

Let us now equate powers ofε and use Equation (2.8a) to get the leading-order and the first-
order perturbation terms of the momentum equation as follows

1uinc = ∇pinc, 1u1+ ω∇(∇ · u1) = ∇p1. (2.10a,b)

This approach shows that the perturbation terms appear in the order ofεi = (M2/Re)i, i =
1,2,3 . . .. The present paper will retain the first perturbation term. Recall that we neglect the
nonlinear convective term for Re� 1. Therefore, the Stokes scaling and perturbation analysis
implies that Equation (1.4a) is justified under the limit

M2� Re� 1. (2.11)
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Equation (2.11) gives rigorous requirements for a weakly compressible flow. The potential
application may be found in a few examples such as a polytropic gas [10] and slider air-
bearings [11], where the compressibility effects were considered for flows at small Reynolds
number. It is of theoretical interest to explore the extension of the Cosserat-spectrum theory
to fluid mechanics. The mathematical aspects of compressible flows at low Reynolds number
have been studied by Kazhikhov [12] and Weigant and Kazhikhov [13]. Kozhevnikov [14]
studied the connection between the Stokes problems in hydrodynamics and boundary-value
problems in elasticity.

3. Application of the Cosserat-spectrum theory to compressible Stokes flow

The present paper extends the Cosserat-spectrum theory to study the first-order perturbation
terms of compressible Stokes flow, which are described by Equation (2.2) and Equations
(2.1b,c). We now rewrite these equations in dimensional form for a domain� as

1u+ ω∇∇ · u = ∇p
µ

in �, (3.1a)

∇ · (ρu) = 0 in �, dp/dρ = c2 in �. (3.1b,c)

The velocity is prescribed on the boundary∂� as

u = ub on ∂�. (3.2)

For a weakly compressible flow, we approximate the solutions to the system of Equation
(3.1) to be the sum of the corresponding incompressible Stokes solutions and their first-order
perturbation terms, namely

u ≈ uinc+ εu1, p ≈ pinc+ εp1, ρ ≈ ρ0+ ερ1, (3.3a,b,c)

whereuinc, pinc, andρ0 are the solutions to the incompressible counterparts;u1, p1, andρ1 are
their first-order perturbation terms, respectively, andε = M2/Re.

As analyzed in the previous section, the leading-order terms are associated with the solu-
tions to the imcompressible counterpartsuinc, pinc, andρ0 as follows

1uinc = ∇pinc

µ
in �, (3.4a)

∇ · uinc = 0 in �, ρ = ρ0 in �, (3.4b,c)

with the boundary condition

uinc = ub on ∂�. (3.4d)

The first-order perturbation termsu1, p1, andρ1 are the dimensional form of Equation
(2.10b), Equation (2.8b) and Equation (2.6a), namely

1u1+ ω∇(∇ · u1) = ∇p1

µ
in �, (3.5a)
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∇ρ1 · uinc+ ρ0∇ · u1 = 0 in �, ρ1 = ρ0L

µU
pinc in �, (3.5b,c)

with the boundary condition

u1 = 0 on ∂�. (3.5d)

We shall now use Equations (3.5b,c) to write the linear continuity equation for the pertur-
bation termu1 as

∇ · u1 = − L

µU
∇pinc · uinc. (3.6)

In the Cosserat-spectrum theory, Equation (3.5a) is the Cosserat-eigenvalue problem of the
first kind. Using the equivalent body forceF = −∇p1 in the Mikhlin-representation equation
(1.2), we have

u1 = − 1

µ

∑
n

{
(∇p1, ũ(−1)

n )

ω + 1
ũ(−1)
n + (∇p1, ũ(∞)n )ũ(∞)n + ω̃n(∇p1, ũn)

(ω̃n − ω) ũn

}
, (3.7a)

(∇p1, ũ) ≡
∫
∇p1 · ũ dV. (3.7b)

By taking(∇p1, ũ(∞)n ) = 0 into account [6], we may reduce Equation (3.7) to

u1 =
∑
n

fnũn +
∑
n

∑
m

f (−1)
nm ũ(−1)

nm , (3.8a)

where

fn ≡ ω̃n(∇p1, ũn)
µ(ω − ω̃n) , f (−1)

nm ≡ −(∇p1, ũ(−1)
nm )

µ(ω + 1)
, (3.8b,c)

are constants to be determined. In general, there exist infinite subspaces of the Cosserat eigen-
vectorsũ(−1)

nm associated with̃ω = −1. A new index parameterm is introduced in Equa-
tion (3.8) in order to specify that̃u(−1)

nm is the (n,m) component in the infinite orthogonal
subspaces of̃u(−1) [7, pp. 189–207].

Substituting Equation (3.8a) in Equation (3.5a) yields∑
n

fn[1ũn + ω∇∇ · ũn] +
∑
n

∑
m

f (−1)
nm [1ũ(−1)

nm + ω∇∇ · ũ(−1)
nm ] =

∇p1

µ
. (3.9)

We now recall that the Cosserat eigenvaluesω̃n or ω̃ = −1 and their corresponding
eigenvectors̃un or ũ(−1)

nm satisfy the homogeneous Navier equations

∇ũn + ω̃n∇∇ · ũn = 0, ∇ũ(−1)
nm −∇∇ · ũ(−1)

nm = 0. (3.10a,b)

The summation of Equation (3.10) over indexn andm gives∑
n

fn[1ũn + ω̃n∇∇ · ũn] = 0, (3.11a)
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n

∑
m

f (−1)
nm [1ũ(−1)

nm −∇∇ · ũ(−1)
nm ] = 0. (3.11b)

Subtraction of Equation (3.9) from Equation (3.11) gives∑
n

fn(ω − ω̃n)∇∇ · ũn +
∑
n

∑
m

f (−1)
nm (ω + 1)∇∇ · ũ(−1)

nm =
∇p1

µ
. (3.12)

Integration of Equation (3.12) gives the pressure perturbation term

p1 = µ
∑
n

fn(ω − ω̃n)∇ · ũn + µ
∑
n

∑
m

f (−1)
nm (ω + 1)∇ · ũ(−1)

nm . (3.13)

The linear continuity equation (3.6) is now employed to evaluate the coefficientsfn and
f (−1)
nm . With the use of Equation (3.8a), Equation (3.6) becomes∑

n

fn∇ · ũn +
∑
n

∑
m

f (−1)
nm ∇ · ũ(−1)

nm = −
L

µU
∇pinc · uinc. (3.14)

Each term in Equation (3.14) is multiplied by∇ · ũk or ∇ · ũ(−1)
kl , then integrated over the

domain�, and with the use of the orthogonality conditions [2] for the first boundary-value
problem, we have

fn = Lω̃n

µU

∫
∇pinc · uinc∇ · ũn dV, (3.15a)

f (−1)
nm = − L

µU

∫
∇pinc · uinc∇ · ũ(−1)

nm dV. (3.15b)

The pressure perturbation termp1 represented by Equation (3.13) can be further simplified.
From Equation (3.14) we have∑

n

∑
m

f (−1)
nm ∇ · ũ(−1)

nm = −
L

µU
∇pinc · uinc−

∑
n

fn∇ · ũn. (3.16)

With the use of Equation (3.16), Equation (3.13) becomes

p1 = −µ
∑
n

fn(1+ ω̃n)∇ · ũn − (ω + 1)L

U
∇pinc · uinc. (3.17)

To solve this compressible-flow problem, one needs to add the perturbation termsεu1, εp1,
and ερ1 to the incompressible counterpartsuinc, pinc, and ρ0. The perturbation terms are
associated with Equation (3.8a), Equation (3.17) and Equation (3.5c), respectively.

It is important to mention thatf (−1)
nm 6= 0 for compressible flow in general. Although it

has no contribution in incompressible flow, the infinite orthogonal subspaces of the Cosserat
eigenfunctions̃u(−1) associated with eigenvaluẽω = −1 play an important role in compress-
ible flow. In other words, the incompressible pressurepinc is harmonic, but the compressible
flow pressurep = pinc+ εp1 is nonharmonic.



162 Wensen Liu and Allen Plotkin

Figure 1. Spherical coordinate system for flow over a sphere.

4. Example: Uniform flow past a sphere

To illustrate the solution technique described above, we now study the compressible Stokes
flow past a sphere with a uniform free-stream profile. The Cosserat eigenvalues and eigen-
vectors for the first boundary-value problem of a spherical rigid inclusion are presented in the
Appendix.

The spherical coordinate system is shown in Figure 1. Note that the angleϕ is not shown.
For this specific flow, the characteristic velocityU = U0 and characteristic lengthL =
r0, whereU0 is the free-stream velocity andr0 the radius of the sphere. Consequently, the
Reynolds number Re= r0U0ρ0/µ, the Mach numberM = U0/c, and the perturbation
parameterε = M2/Re= µU0/r0ρ0c

2.
As described in the previous section, the solutions of a compressible flow are approximated

as the sum of its incompressible counterparts and the corresponding perturbation terms. We
now study the perturbation terms for the compressible flow over a sphere with uniform free-
stream profile. Referring to the pressure in the incompressible flow [9, p. 688] we calculate its
gradient as follows

pinc = p0+ 3µr0U0

2r2
cosθ, (4.1)

∇pinc = −3µr0U0

r3
(cosθer + 1

2 sinθeθ ). (4.2)

The velocity field of the incompressible flow [9, p. 688] can be expressed as follows

uinc = U0

(
−1+ 3r0

2r
− r3

0

2r3

)
cosθer + U0

(
1− 3r0

4r
− r3

0

4r3

)
sinθeθ . (4.3)

The scalar product of∇pinc · uinc is now written as

∇pinc · uinc = −3µU2
0

r2
0

[14(s4− s6)− (s3 − 5
4s

4+ 1
4s

6)P2(cosθ)], (4.4)
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wheres = r0/r andP2(cosθ) is the Legendre polynomial of degree 2.
We now use Equation (4.4) and Equation (A3) in conjunction with Equation (3.15a) to

evaluate the coefficientsfn as follows

f2 = 3πC2r
2
0U0

2
and C2 = ±

√
1

16πr30
, (4.5a)

fn = 0, n = 1,3,4, . . . . (4.5b)

Inserting Equation (4.4) into Equation (3.15b) to obtain the coefficientsf (−1)
nm , we have

f (−1)
nm = 3U0

r0

∫
[14(s4− s6)− (s3 − 5

4s
4 + 1

4s
6)P2]∇ · ũ(−1)

nm dV, (4.6)

where

dV = 2πr3
0 sinθ

s4
ds dθ, s ∈ [0,1], θ ∈ [0, π ],

is the volume element in the spherical coordinate system(s, θ) [7, pp. 189–207].
Next, we use∇ · ũ(−1)

nm ∝ Pn(cosθ) and the orthogonal property of the Legendre poly-
nomials to get

f
(−1)
0m = 3U0

4r0

∫
(s4 − s6)∇ · ũ(−1)

0m dV, (4.7a)

f
(−1)
2m = −3U0

r0

∫
(s3− 5

4s
4 + 1

4s
6)P2∇ · ũ(−1)

2m dV, (4.7b)

f (−1)
nm = 0, n 6= 0,2. (4.7c)

We now insert Equation (A7) into Equation (4.7a) to evaluate the coefficientf
(−1)
0m and get

f
(−1)
0m = 3πC0mr

2
0U0

∫ 1

s=0
(s2 − s4)J0m(s)ds. (4.8)

Since the Jacobi polynomials are complete, we can write

s2 − s4 = 2
15J00+ 1

5J01− 5
7J02− 2J03− J04. (4.9)

The orthogonal property of the Jacobi polynomialsJ0m(s) is used to get

f
(−1)
00 = 2πC00h00r

2
0U0

5
, f

(−1)
01 = 3πC01h01r

2
0U0

5
, (4.10a,b)

f
(−1)
02 = −15πC02h02r

2
0U0

7
, f

(−1)
03 = −6πC03h03r

2
0U0, (4.10c,d)

f
(−1)
04 = −3πC04h04r

2
0U0, f

(−1)
0m = 0 (m > 5). (4.10e,f)



164 Wensen Liu and Allen Plotkin

Inserting Equation (A12) into (4.7b) to evaluate the coefficientf
(−1)
2m , we have

f
(−1)
2m = −12πC2mr

2
0U0

5

∫ 1

s=0
(1− 5

4s + 1
4s

3)J2m(s)s
2 ds. (4.11)

The completeness of the Jacobi polynomials is used to evaluate

1− 5
4s + 1

4s
3 = 3

16J20− 25
28J21+ 15

32J22+ 1
4J23. (4.12)

Use of the orthogonal property of the Jacobi polynomialsJ2m(s) yields

f
(−1)
21 = 15πC21h21r

2
0U0

7
, f

(−1)
22 = −9πC22h22r

2
0U0

8
, (4.13a,b)

f
(−1)
23 = −3πC23h23r

2
0U0

5
, f

(−1)
2m = 0 (m > 4). (4.13c,d)

The velocity perturbation term due to the contribution from the discrete Cosserat eigen-
functionsũn is as follows

f2ũ2 = 3U0

32
(s2− s4)

(
−3P2er + dP2

dθ
eθ

)
. (4.14)

With the use of Equation (4.10) and̃u(−1)
0m , defined by Equations (A10a,c,e,g,i), we eval-

uate the second part of Equation (3.8a) to obtain the velocity perturbations term due to the
contribution from the Cosserat eigenfunctionsũ(−1)

0m as follows

f
(−1)
00 ũ(−1)

00 + f (−1)
01 ũ(−1)

01 + f (−1)
02 ũ(−1)

02 + f (−1)
03 ũ(−1)

03 + f (−1)
04 ũ(−1)

04

= −U0

(
s

14
− 137s2

70
+ 57s3

28
+ 3s4

5
− 3s5

4
− 32s2 log(s)

35

)
er . (4.15a)

Similarly, by using Equation (4.13) and̃u(−1)
2m , defined by Equations (A15a,c,e), we obtain

the velocity perturbations term due to the contribution from the Cosserat eigenfunctionsũ(−1)
2m

as follows

f
(−1)
21 ũ(−1)

21 + f (−1)
22 ũ(−1)

22 + f (−1)
23 ũ(−1)

23 =
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= −5U0

2

(
37s2

392
− 155s3

392
− 81s4

196
+ 5s5

7
− 9s4 log(s)

16

)
P2er

+5U0

4

(
37s2

196
− 155s3

392
− 59s4

392
+ 5s5

14
− 3s4 log(s)

8

)
dP2

dθ
eθ . (4.15b)

The velocity perturbation term is therefore expressed in closed form as follows

εu1 = 3εU0

32
(s2 − s4)

(
−3P2er + dP2

dθ
eθ

)

−εU0

(
s

14
− 137s2

70
+ 57s3

28
+ 3s4

5
− 3s5

4
− 32s2 log(s)

35

)
er

−5εU0

2

(
37s2

392
− 155s3

392
− 81s4

196
+ 5s5

7
− 9s4 log(s)

16

)
P2er

+5εU0

4

(
37s2

196
− 155s3

392
− 59s4

392
+ 5s5

14
− 3s4 log(s)

8

)
dP2

dθ
eθ . (4.16)

By using Equation (3.17) to calculate the pressure perturbation term, we get

εp1 = 3ε(ω + 1)µU0

4r0
[(s4 − s6)− (4s3 − 5s4 + s6)P2] − 3εµU0

8r0
s3P2. (4.17)

Now we use Equation (3.5c) to write the density perturbation term as

ερ1 = 3ερ0

2
s2 cosθ. (4.18)

Results for the pressure and velocity perturbation terms are shown in the following figures.
In Figure 2 the nondimensional pressurep1 = p1/(µU0/r0) has been plotted forω = 1

3. Fig-
ure 2(a) showsp1 on the surface of the sphere. Since the compressible pressure perturbation
is proportional toP2(cosθ) on the surface, we see thatp1 is symmetric aboutθ = 90◦.
Figures 2(b,c) show the pressuresvs. the nondimensional radial distancer/r0 at θ = 00

(or 180◦),90◦, respectively. Atθ = 90◦, while the incompressible pressure is identically
zero, the compressible pressure is not. In Figure 3 the nondimensional velocity perturbation
componentsu1r = u1r/U0 andu1θ = u1θ/U0 have been plottedvs.r/r0 at different values of
θ . Figures 3(a–c) show the radial velocity componentsu1r at θ = 0◦,90◦,180◦, respectively.
Figures 3(d–e) show the tangential velocity componentsu1θ at θ = 45◦,135◦, respectively.
The tangential velocity componentu1θ is zero atθ = 0◦, θ = 90◦ andθ = 180◦. At θ = 90◦,
while the radial velocity component is identically zero for incompressible flow, it is not zero
for the weakly compressible flow.

It should be stressed that the only dependence onω comes from the pressure perturbation
term, while the velocity and density perturbation terms are independent of it.
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(2a) Dimensionless pressurep1 around the surface
(r = r0).

(2b) Dimensionless pressurep1 vs. r/r0 (θ = 0◦,
180◦).

(2c) Dimensionless pressurep1 vs. r/r0 (θ = 90◦). (3a) Dimensionless velocityu1r vs. r/r0 (θ = 0◦).

Figure 2.Dimensionless pressure perturbationp1.

(3b) Dimensionless velocityu1 vs. r/r0 (θ = 90◦). (3c) Dimensionless velocityu1r vs. r/r0 (θ = 180◦).

(3d) Dimensionless velocityu1θ vs. r/r0 (θ = 45◦). (3e) Dimensionless velocityu1θ vs. r/r0 (θ = 135◦).

Figure 3.Dimensionless velocity perturbationu1r andu1θ vs. r/r0.
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Now let us compute the drag force for the weakly compressible flow. The stressσ applied
to the sphere by the fluid is given by

σ = pI − (2µε + λ div εI), (4.19)

whereε is the strain rate tensor, andI is the identity tensor. The traction acting on the surface
of the sphere is given by

t = σ · n = [p − (2µεrr + λεkk)]er − 2µεrθeθ . (4.20)

The traction component in thex-direction will be

tx = t · ex = −[p − (2µεrr + λεkk] cosθ − 2µεrθ sinθ (4.21)

and the drag force is therefore given by

FD =
∫
tx |r=r0 ds, (4.22)

where ds = 2πr2
0 sinθ dθ, θ ∈ [0, π ].

The pressure and velocity for the weakly compressible flow are recalled as follows

p = pinc+ εp1, (4.23)

u = uinc+ εf2ũ2+ ε
∑
m

f
(−1)
0m ũ(−1)

0m + ε
∑
m

f
(−1)
2m ũ(−1)

2m . (4.24)

The drag force contributed by the incompressible componentspinc and uinc is given by [9
p. 689]

FDinc = 6πµU0r0. (4.25)

The drag force contributed from the pressure perturbation termp1 ∝ P2(cosθ) is proportional
to ∫ π

0
P2(cosθ) cosθ sinθ dθ = 0. (4.26)

We now evaluate the drag force contributed from the velocity perturbation termf2ũ2 ∝
f (r)P2er + g(r)(dP2/dθ)eθ , where the functionsf (r) andg(r) vanish onr = r0. The strain-
rate components on the surface are therefore proportional to

εrr |r=r0 ∝ P2(cosθ), εθθ |r=r0 = 0, (4.27a,b)

εφφ|r=r0 = 0, εrθ |r=r0 ∝
dP2(cosθ)

dθ
, (4.27c,d)

and the stress components are thus proportional to

σrr |r=r0 ∝ P2(cosθ), σrθ |r=r0 ∝
dP2(cosθ)

dθ
. (4.28a,b)
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Note that the normal stressσrr = 0 on the surface of the sphere is for the incompressible flow,
while it is not for a compressible flow. Using Equations (4.21), (4.22) and (4.27), we find
that the velocity componentsf2ũ2 have no contribution to the drag force. Repeating the same
procedures, we also find that the other velocity componentsf

(−1)
0m ũ(−1)

0m andf (−1)
2m ũ(−1)

2m have no
contribution to the drag force. Consequently,FD = FDinc, i.e. the compressibility effect does
not alter the drag force.

5. Discussion and conclusions

In this paper we have extended the applicability of the Cosserat-spectrum theory to fluid me-
chanics and have demonstrated its usefulness in the solution of weakly compressible Stokes-
flow problems. With the use of a perturbation approach, the solution of a compressible flow
(Equations (3.1)) was approximated as the sum of its incompressible counterpart and the corre-
sponding perturbation term. In this perturbation approach,ε = M2/Re� 1 was assumed for
a weakly compressible flow. A general perturbation analysis presented in Section 2 indicates
that these terms appear in the order ofεn, n = 1,2,3 . . .. The present paper has retained the
first perturbation term.

The continuity equation was employed to evaluate the perturbation terms, which are as-
sociated with both the discrete eigenvectorsũn and the eigenvectors̃u(−1)

nm corresponding to
eigenvalueω̃ = −1 of infinite multiplicity. Once the Cosserat eigenvalues were obtained and
eigenvectors relating to the specific domain� derived, the solutions were found by evalua-
tion of the coefficientsfn andf (−1)

nm of ũn and ũ(−1)
nm , respectively. At the present time, the

sphere is the only 3D body for which the Cosserat eigenvalues and eigenvectors are available.
The velocity-perturbation term is closely related toũn and ũ(−1)

nm . The pressure perturbation
term has been shown to be related to the divergence of the Cosserat eigenvectors divũn and
div ũ(−1)

nm , but it could be written in a closed form without involving divũ(−1)
nm . The density

perturbation term was written in a simple closed form without involving both divũn and
div ũ(−1)

nm .

By applying this solution technique, we have obtained an analytical solution for the com-
pressible Stokes flow over a sphere with a uniform free-stream profile. Only the discrete
eigenvector̃u2 and finite terms of̃u(−1)

nm (n = 0,2) contribute to the velocity field. The velocity,
pressure and density perturbation terms were obtained in closed form. Also, the velocity,
pressure and density change due to the compressibility effect, and the drag force was shown
to remain the same.

Appendix A. The Cosserat eigenvalues and eigenvectors for a spherical rigid inclusion

In the example shown above, we need to useω̃n (discrete eigenvalue),̃un (discrete eigen-
vector), ũ(−1)

0m and ũ(−1)
2m (eigenvectors associated with the eigenvalue of infinite multiplicity

ω̃ = −1) for the first boundary-value problem of a spherical rigid inclusion in an infinite
space. These Cosserat eigenvalues and eigenvectors are recalled as follows [7, pp. 30–32,
189–207].

For an axisymmetric problem, the discrete Cosserat eigenvalueω̃n, the discrete eigenvector
ũn and its divergence are given by

ω̃n = −2n + 1

n+ 1
, ũn = Cn(r2− r2

0)∇F−(n+1), (A1,2)
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∇ · ũn = −2(n+ 1)CnF−(n+1), (A3)

wheren = 1,2, . . . and

(Cn)
2 = 2n− 1

16(n+ 1)πr3
0

, F−(n+1) =
(r0
r

)n+1
Pn(cosθ), (A4,5)

andPn(cosθ) is the Legendre polynomial of degreen.
The Cosserat eigenvectorũ(−1)

0m and its divergence are given as follows

ũ(−1)
0m = u0mrer + uomθeθ , (A6a)

u0mr = R0m(s), u0mθ = 0, (A6b,c)

R0m(s) = −C0mr0s
2
∫ s

t=1
t−2Jom(t)dt, (A6d)

∇ · ũ(−1)
0m = C0ms

2J0m(s), (A7)

wherem = 0,1,2, . . . and

C2
0m =

1

4πr3
0h0m

, (A8)

J0m(s) = 0(m+ 1)

0(2m+ 1)

m∑
l=0

(−1)l
(
m

l

)
0(2m− l + 1)

0(m− l + 1)
sm−l , (A9a)

h0m = 04(m+ 1)

(2m+ 1)02(2m+ 1)
, (A9b)

where0(m) is the Gamma function and
(
m

l

) = m!/ l!(m − l)! is the binomial coefficient.
Equation (A9) defines a Jacobi polynomial with weightw(s) = 1, J0m(s), and its normh0m

[15, pp. 773–775].
The first five eigenvectors of̃u(−1)

0m and their divergence∇ · ũ(−1)
0m (m = 0,1, . . . ,4) used in

the example of uniform flow past a sphere are written out explicitly as follows

ũ(−1)
00 =

1

2
√
πr0

(s − s2)er , (A10a)

∇ · ũ(−1)
00 =

1

2
√
πr3

0

s2, (A10b)

ũ(−1)
01 = −

√
3

2
√
πr0

(3s − 3s2 + 4s2 log(s))er , (A10c)

∇ · ũ(−1)
01 = −

√
3

2
√
πr3

0

(3s2 − 4s3), (A10d)
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ũ(−1)
02 =

√
5

2
√
πr0

(6s + 9s2 − 15s3 − 20s2 log(s))er , (A10e)

∇ · ũ(−1)
02 =

√
5

2
√
πr3

0

(6s2 − 20s3 + 15s4), (A10f)

ũ(−1)
03 = −

√
7

2
√
πr0

(10s+ 67s2 − 105s3 + 28s4 + 60s2 log(s))er , (A10g)

∇ · ũ(−1)
03 = −

√
7

2
√
πr3

0

(10s2 − 60s3 + 105s4 − 56s5), (A10h)

ũ(−1)
04 =

3

2
√
πr0

(15s+ 223s2 − 420s3 + 252s4 − 70s5 + 140s2 log(s))er , (A10i)

∇ · ũ(−1)
04 =

3

2
√
πr3

0

(15s2 − 140s3 + 420s4 − 504s5 + 210s6). (A10j)

The Cosserat eigenvectorũ(−1)
2m and its divergence are as follows

ũ(−1)
2m = u2mrer + u2mθeθ , (A11a)

u2mr = R2m(s)P2(cosθ), (A11b)

u2mθ = −s
∫ s

1
R2m(t)

dt

t2

dP2(cosθ)

dθ
, (A11c)

R2m(s) = −3
5C2mr0s

4

∫ s

t=1
(t−3+ 2

3t
2)J2m(t)dt

−2
5C2mr0(s

−1 − s4)

∫ s

t=0
t2J2m(t)dt, (A11d)

∇ · ũ(−1)
2m = C2ms

3J2m(s)P2(cosθ). (A12)

wherem = 1,2,3, . . . and

C2
2m =

5

4πr3
0h2m

, (A13)

J2m(s) = 0(m+ 3)

0(2m+ 3)

m∑
l=0

(−1)l
(
m

l

)
0(2m− l + 3)

0(m− l + 3)
sm−l , (A14a)

h2m = 02(m+ 1)02(m+ 3)

(2m+ 3)02(2m+ 3)
. (A14b)
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Equation (A14) defines a Jacobi polynomial with weightw(s) = s2, J2m(s), and its norm
h2m [15, pp. 773–775].

The first three eigenvectors ofũ(−1)
2m and their divergences∇ · ũ(−1)

2m (m = 1,2,3) used in
the example of uniform flow past a sphere are written out explicitly as follows

ũ(−1)
21 = − 5

4
√
πr0

(s2 − 4s3 + 3s4)P2(cosθ)er

+ 5

4
√
πr0

(s2 − 2s3 + s4)
dP2(cosθ)

dθ
eθ , (A15a)

∇ · ũ(−1)
21 = −

5

2
√
πr3

0

(3s3 − 4s4)P2(cosθ), (A15b)

ũ(−1)
22 =

√
35

2
√
πr0

(s2 − 10s3 + 9s4 − 9s4 log(s))P2(cosθ)er

−
√

35

2
√
πr0

(s2 − 5s3 + 4s4 − 3s4 log(s))
dP2(cosθ)

dθ
eθ , (A15c)

∇ · ũ(−1)
22 =

√
35

2
√
πr3

0

(6s3 − 20s4 + 15s5)P2(cosθ), (A15d)

ũ(−1)
23 = −

√
5

2
√
πr0

(5s2 − 90s3 − 27s4 + 112s5 − 189s4 log(s))P2(cosθ)er

+
√

5

2
√
πr0

(5s2 − 45s3 + 12s4 + 28s5 − 63s4 log(s))
dP2(cosθ)

dθ
eθ , (A15e)

∇ · ũ(−1)
23 = −

3
√

5

2
√
πr3

0

(10s3 − 60s4 + 105s5 − 56s6)P2(cosθ). (A15f)
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